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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 365O 

RESULTS OF A FLIGHT INVESTIGATION TO DETERMINE THE 

ZERO-LIFT DRAG CHARACTERISTICS OF A 60° DELTA WING WITH 

NACA 65-OO6 AIRFOIL SECTION AND VARIOUS DOUBLE-WEDGE 

SECTIONS AT MACH NUMBERS FROM 0.7 TO 1.61 

By Clement J. Welsh 

SUMMARY 

Results of an exploratory free-flight investigation at zero lift 
of several rocket-powered drag-research models equipped with 60 swept- 
back delta wings are presented for a Mach number range from about O.7O 
to 1.60. The airfoil sections tested included the NACA 65-OO6 and a 
series of double-wedge sections with various thicknesses and positions 
of maximum thickness. 

The results of the investigation showed that, of the double-wedge 
sections with 6 percent thickness, the two sections with positions of 
maximum thickness at 20 and 50 percent of the chord had drag coefficients 
approximately equal through the transonic and supersonic Mach number 
range and had similarly occurring drag rises. The section with position 
of maximum thickness at 80 percent chord had a drag rise occurring at a 
Mach number M of approximately 0.15 lower than the drag rise of the 
other two sections. At M = 1.0, this section had drag coefficients more 
than twice as large as those of the other two sections; however, this 
difference decreased with increasing supersonic Mach numbers. The wing 
drag calculated by the linearized theory was in qualitative agreement 
with the test results in indicating the effects of varying the position 
of maximum thickness. The double-wedge section of 3 percent thickness 
with position of maximum thickness at 50 percent chord had fairly con- 
stant drag coefficients throughout the supersonic region, which ranged 
from about 50 to 80 percent of the drag coefficients for the similar 
section with twice the thickness ratio. The theoretical wing drag for 
this section was in very good agreement with the experimental value. 
The NACA 65-OO6 airfoil section had lower drag coefficients throughout 
the test region than any of the double-wedge sections of the same thick- 
ness ratio, although at the highest Mach numbers covered by these tests, 
the differences became very small. 

•^Supersedes declassified NACA Research Memorandum L50F01 by 
Clement J. Welsh, 1950. 
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INTRODUCTION 

As part of the National Advisory Committee for Aeronautics program 
to determine the drag characteristics at zero lift of various wings at 
supersonic, transonic, and high-subsonic speeds, tests of a series of 
60° delta wings with varying airfoil sections have been made. These 
tests were conducted at the Langley Pilotless Aircraft Research Station 
at Wallops Island, Va., with the wings being mounted on rocket-propelled 
test bodies. 

The results are presented as curves of total-drag coefficient and 
wing drag coefficient plotted against Mach number. Curves of theoretical 
wing drag coefficients are shown, for the double-wedge-section wings, for 
comparative purposes. 

SYMBOLS 

R Reynolds number based on wing mean aerodynamic chord 

CDu total-drag coefficient based on exposed wing area 

C-n wing plus wing-body interference drag coefficient based on 
"       exposed wing area 

t/c wing thickness ratio 

t maximum wing section thickness, in. 

c wing chord measured parallel to center line of body, in. 

M Mach number 

m mass of the test vehicle, propellant expended 

dV/dt rate of change of velocity along flight path 

g acceleration due to gravity, 32.17^0 ft/sec2 

7 flight-path angle, measured from horizontal, deg 

p mass density of air, slugs/cu ft 

S exposed wing area, sq ft 

V velocity along flight path, ft/sec 
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MODELS 

The general arrangement of the drag-research models used in the 
present investigation is shown in figure 1 and a typical plan-view photo- 
graph is shown in figure 2. The body of the models was cylindrical with 
a pointed ogival nose and was stabilized with four thin fins located near 
the base. The wings investigated were of delta plan form, had 60 sweep- 
back of the leading edge, were of equal size relative to the body, were 
mounted on the body in the same location, and differed only in airfoil 
section. The variations of the airfoil sections of the five configura- 
tions investigated are indicated in the table shown in figure 1. Three 
configurations were double-wedge airfoil sections of 6 percent thickness 
but had the position of maximum thickness of the section located at 20, 
50, and 80 percent of the chord. A fourth configuration was a double- 
wedge, 3-percent-thick section with maximum thickness at 50 percent chord. 
The last configuration had an NACA 65-OO6 airfoil section. Models without 
wings were flown to make possible the determination of the increment in 
drag produced by addition of the test wings. For convenience, the double- 
wedge sections with position of maximum thickness at 50 percent chord will 
be referred to as symmetric sections in the rest of this paper. 

The bodies of the models were made of pine and balsa wood, and the 
wings and fins were made of aluminum. The models were propelled as two- 
stage rockets. The first stage or booster employed a 5-inch high-velocity 
aircraft rocket. The models comprised the second stage and were propelled 
by 3.25-inch aircraft rocket motors which were contained within the models. 

TESTS 

The models were flown at the Langley Pilotless Aircraft Research 
Station at Wallops Island, Va. The tests were performed by the usual 
method. The models were launched at an elevation angle of approximately 
70° above the horizontal, and drag measurements were made during the 
coasting period of the model down through the Mach number range to sub- 
sonic speeds. From the summation of the forces acting upon the model 
along the direction Of the flight path, the drag force may be found and 
equated to the standard formula for drag involving the drag coefficient, 
thus giving 

2m(^ + g sin 7 
CD =—^i 

pSV^ 
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The range, velocity, and acceleration relative to a point on the ground 
near the launcher were measured from the ground by a CW Doppler type 
radar. The trajectory was measured with an SCR 58H- radar theodolite. 
The trajectory measurements provided the flight-path angle 7, the alti- 
tude, and the small corrections to the measured velocity and acceleration 
necessitated by the slight curvature of the portion of the trajectory 
during which the drag measurements were obtained. The variation of 
atmospheric pressure and temperature with altitude, which gives the air 
density p, the velocity of sound for determining the Mach number, and 
the viscosity of air for determining the Reynolds number, was measured 
by radiosonde at the time of the tests. 

The CW Doppler type radar furnished a time history of the radial 
distance to the model. Velocity and acceleration were obtained, respec- 
tively, as the first and second time derivatives of this time history. 
The method by which the two" differentiations were obtained has been 
analytically developed to its present state of precision which is less 
than 0.5 foot per second of velocity error and less than 3 feet per 
second per second of acceleration error. 

The wing drag coefficients, including wing-body interference, were 
obtained as the difference between the drag coefficients of winged and 
wingless models. The tests were performed with the wings mounted on a 
readily constructed body which had drag coefficients that were well 
established from previous tests. The difference between the drag coef- 
ficients of the winged and of the wingless models being small relative 
to the drag of the wingless model, particularly at subsonic speeds, causes 
low accuracy of the determined wing-plus-interference drag coefficients; 
however, the accuracy is sufficient for displaying the trends sought in 
this exploratory investigation. Because of the relatively low accuracy 
required in this exploratory investigation, repetitive tests were per- 
formed in only a few cases; so assurance is not given that, in the.single 
tests, the results do not deviate from the correct values to an extent 
greater than the amount normally existing in repetitive tests of this 
type. From a large number of similar previous tests, the probable error 
in wing drag coefficients is estimated to be ±0.002 at M = 0.80, ±0.0013 
at M = 1.1, and 0.0035 and -O.OOI5 at M = l.k.    The probable error in 
Mach number is estimated to be ±0.01 at M = 0.8 and ±0.005 at M = l.k. 

The average Reynolds number of the ten models tested, based on wing 
mean aerodynamic chord of 15-25 inches, varied from 3-5 X 106 at M = 0.6l 
to 1^.2 x 10° at M = I.75. A plot of Reynolds number against Mach num- 
ber is shown in figure 3. 
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RESULTS AND DISCUSSION 

The total-drag coefficients Ci>p plotted against Mach number M 

for all the configurations investigated including the basic wingless 
body are presented in figure k.    Two models were flown for each of the 
five configurations tested; however, data were obtained for only one 
model for each of the two symmetric double-wedge-section configurations. 
The drag of the wingless body was subtracted from the total drag of each 
configuration, thus leaving the wing drag plus wing-body interference 
drag for each. This wing drag coefficient is shown plotted against Mach 
number M in figures 5 and 6. 

Calculated wing drag coefficients are also shown in figures 5 and 6 
for the double-wedge sections. The calculated values include a constant 
viscous drag coefficient, estimated at 0.006, which has been added to the 
theoretical wave drag coefficients obtained from reference 1. 

Of the double-wedge sections with 6 percent thickness, the two sec- 
tions with positions of maximum thickness at 20 and 50 percent of the 
chord had drag coefficients approximately equal through the transonic 
and supersonic Mach number range and had similarly occurring drag rises. 
The section with position of maximum thickness at 80 percent chord had a 
drag rise occurring at a Mach number of approximately 0.15 lower than 
the drag rise of the other two sections. At M = 1.0, this section had 
drag coefficients more than twice those of the other two sections; however, 
this difference decreased with increasing supersonic Mach numbers. The 
wing drag calculated by the linearized theory was in qualitative agreement 
with the test results in indicating the effects of varying the position 
of maximum thickness. 

The symmetric double-wedge section of 3 percent thickness had fairly 
constant drag coefficients throughout the supersonic region, which ranged 
from about 50 to 80 percent of the drag coefficients for the symmetric 
double-wedge section of 6 percent thickness. The theoretical wing drag 
for this section was in very good agreement with the experimental value. 

The NACA 65-OO6 airfoil section had lower drag coefficients throughout 
the test region than the symmetric double-wedge section of the same thick- 
ness ratio. In the region of M = O.975, the NACA 65-OO6 section appears 
to show a favorable wing-body interference drag. 
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CONCLUSIONS 

Measurements of the effect of airfoil section on the wing plus wing- 
"body interference drag at zero lift of delta-plan-form wings having 
6o° leading-edge sweepback and tested at high Reynolds numbers over the 
Mach number range from about 0.7 to 1.6 in free flight on cylindrical, 
fin-stabilized bodies with pointed nose lead to the following conclusions: 

1. Of the double-wedge sections with 6 percent thickness, the two 
sections with positions of maximum thickness at 20 and 50 percent of the 
chord had drag coefficients approximately equal through the transonic 
and supersonic Mach number range and had similarly occurring drag rises.. 
The section with position of maximum thickness at 80 percent chord had a 
drag rise occurring at a Mach number M of approximately 0.15 lower than 
the drag rise of the other two sections. At M = 1.0, this section had 
drag coefficients more than twice those of the other two sections; however, 
this difference decreased with increasing supersonic Mach numbers. The 
wing drag calculated by the linearized theory was in qualitative agreement 
with the test results in indicating the effects of varying the position 
of maximum thickness. 

2. The symmetric double-wedge section of 3 percent thickness had 
fairly constant drag coefficients throughout the supersonic region which 
ranged from about 50 to 80 percent of the drag coefficients for the 
symmetric double-wedge section of 6 percent thickness. The theoretical 
wing drag for this section was in very good agreement with the experi- 
mental value. 

3. The NACA 65-OO6 airfoil section had lower drag coefficients 
throughout the investigated transonic and supersonic regions than any 
of the double-wedge sections of the same thickness ratio, although at 
the highest Mach numbers reached, the differences became very small. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., June 2, 1950. 
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L-633I2.I 

Figure 2.- Test vehicle showing plan view of delta wings investigated. 
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Figure 3.- Average variation of Reynolds number with Mach number for 
all models tested, based on mean aerodynamic chord of the wing of 
15.25 inches. 
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Figure k.-  Variation of total-drag coefficient with Mach number. Wing 
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Figure 5-- Comparison of the wing drag coefficient of the double-wedge 
sections of 6 percent thickness with varying positions of maximum 
thickness. The coefficients are based on wing area of 200 square inches. 
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